REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathering and maintai
collection of informati

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
ning the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
on, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Jun 96

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Engine

Robust Discrete Estimation of the Space Shuttle Main

6. AUTHOR(S)

Jonathan Andrew Jensen

5. FUNDING NUMBERS

AFIT Student Attending:

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institutecof Tech

8. PERFORMING ORGANIZATION
REPORT NUMBER

96-050

AFIT/CI

2950 P STREET, BLDG 125
WRIGHT-PATTERSON AFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DEPARTMENT OF THE AIR FORCE

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Distribution Unlimited

Chief Administration

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release IAW AFR 190-1

BRIAN D. GAUTHIER, MSgt, USAF

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

9960809 122

14. SUBJECT TERMS

15. NUMBER OF PAGES
72

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
;’;essc;éged by ANSI Std. 739-18

N I




—

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Ornlv"(’Lea‘ve blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether reportisinterim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A titleistaken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - Seeauthorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

* U.8.GP0:1990-0-273-271

Standard Form 298 Back (Rev. 2-89)




Robust Discrete Estimation of the
Space Shuttle Main Engine

by
Jonathan Andrew Jensen

B.S., Mechanical Engineering,
United States Air Force Academy
(1994)

Submitted to the Department of Aeronautics and
Astronautics on May 10, 1996 in partial fulfillment of the
requirements for the degree of Master of Science

Abstract

This thesis applies recently developed robust Heo, or game-theoretic, estimation
algorithms to the Space Shuttle Main Engine (SSME). The objective is to process noisy,
inaccurate sensor data in order to obtain estimates of pressure in the main combustion
chamber and the oxygen to fuel mixture ratio. Each of the estimators are based on
discrete-time, state-space models of the SSME, and employ varying levels of robustness
when solving the Heo estimation problem. Two general problems are examined. First,
Hoo minimax estimators are derived for the case where the plant dynamics are accurately
known, but the noise statistics are uncertain. The effects of various noise inputs are
explored. Next, robust Heo estimators are designed when plant, sensor, and noise
uncertainties are present. It is shown that the performance of the normally optimal
Kalman filter degrades considerably in the presence of model uncertainty. By contrast,
the robust Heo estimators perform well for the entire range of plant, sensor, and noise
models considered.

Thesis Supervisor:  Roger M. Hain
Title: Member of the Technical Staff, C. S. Draper Laboratory

Thesis Supervisor: ~ Wallace E. Vander Velde

Title: Professor of Aeronautics and Astronautics, Emeritus




CSDL-T-1268

ROBUST DISCRETE ESTIMATION OF
THE SPACE SHUTTLE MAIN ENGINE

by
Jonathan Andrew Jensen

June 1996

Master of Science Thesis
Massachusetts Institute of Technology

[RAPER©

LABORATORY

The Charles Stark Draper Laboratory, Inc.
555 Technology Square, Cambridge, Massachusetts 02139-3563




Robust Discrete Estimation of the
Space Shuttle Main Engine

by
Jonathan Andrew Jensen
B.S., Mechanical Engineering,
United States Air Force Academy
(1994)

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND
ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996
© 1996 Jonathan Andrew Jensen. All rights reserved.

Signature of Author Q@‘V\N\@A M

Department of Aronautics and Astronautics

I\Z:i)\, 1996
Certified by /@g/(/] /

Roger M. Hain
Technical Staff, C. S. Draper Laboratory
Thesis Supervisor

- '
Certified by 1/(/ Méa— ¢ U e /Z Wo@

Wallace E. Vander Velde
Professor of Aeronautics and Astronautics, Emeritus
Thesis Supervisor

Accepted by

Professor Harold Y. Wachman
Chairman, Department Graduate Committee




Robust Discrete Estimation of the
Space Shuttle Main Engine

by
Jonathan Andrew Jensen

B.S., Mechanical Engineering,
United States Air Force Academy
(1994)

Submitted to the Department of Aeronautics and
Astronautics on May 10, 1996 in partial fulfillment of the
requirements for the degree of Master of Science

Abstract

This thesis applies recently developed robust Heo, or game-theoretic, estimation
algorithms to the Space Shuttle Main Engine (SSME). The objective is to process noisy,
inaccurate sensor data in order to obtain estimates of pressure in the main combustion
chamber and the oxygen to fuel mixture ratio. Each of the estimators are based on
discrete-time, state-space models of the SSME, and employ varying levels of robustness
when solving the Heo estimation problem. Two general problems are examined. First,
Heo minimax estimators are derived for the case where the plant dynamics are accurately
known, but the noise statistics are uncertain. The effects of various noise inputs are
explored. Next, robust Hoo estimators are designed when plant, sensor, and noise
uncertainties are present. It is shown that the performance of the normally optimal
Kalman filter degrades considerably in the presence of model uncertainty. By contrast,
the robust Heo estimators perform well for the entire range of plant, sensor, and noise
models considered.

Thesis Supervisor:  Roger M. Hain
Title: Member of the Technical Staff, C. S. Draper Laboratory

Thesis Supervisor: ~ Wallace E. Vander Velde

Title: Professor of Aeronautics and Astronautics, Emeritus




Acknowledgments

Naturally there are many who deserve credit for their assistance in this endeavor.
To start, I would like to thank Draper Laboratory for giving me this opportunity. Without
their resources this thesis would not have been possible. There are several individuals of
Draper who deserve recognition for their help, insightful questions, patience,
encouragement, and knowledge, including Neil Adams and Brent Appleby. Rami
Mangoubi explained his theory, offered suggestions on how to improve my results, and
devoted time to careful and detailed proofreading. A special thanks to Roger Hain, who,
as my supervisor, not only challenged me technically, but also taught me much in how to
listen, how to think, and how to respect others. In addition to the Draper employees, I
would like to thank Professor Vander Velde for his careful reading of this thesis and
prudent suggestions.

Next I would like to thank some of my peers--my neighbor Jim Dyess, who
helped keep MIT in perspective, and Larry McGovern, who repeatedly answered many of
my ignorant questions. Scott Carter, my cohort in "general disregard for following
procedure,” provided a much needed link to the Air Force and inspired me to excellence.
I guess we were the off year.

And lastly, thank you is simply not enough for my wife, Katharine, who provided
support, encouragement, and love for me as no other could.

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under Indepent
Research and Development CSR Project Number 709.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency
of the findings or conclusions contained herein. It is published for the exchange and
stimulation of ideas.

I bereby assign my copyright of this thesis to The Charles Stark Draper Laboratory, Inc.,

Cambridge, Massachusetts.
[}

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc., to the
Massachusetts Institute of Technology to reproduce any or all of this thesis.




Table of Contents

1.0 Introduction 11

2.0 Model Identification.... 15

2.1 Space Shuttle Main ENGINE .....cc.cueeveuieueieiieeeceeeetcecce ettt 15

2.2 Description of System MatriCes ........eeeuruereererieereersieeeteeeeeeceenseeessessenenens 17

2.3 NOISE MOGEIS .......orieiuiineieiieirine ettt s sseeene e seeeeeeenns 20

2.3.1 PrOCESS IOISE ....c.veuervruirerirtnnieeiereteseeseeeseseeeeseseesesensesenressesessenas 22

2.3.2 SENSOT NOISE ....cueereererenerereiereteteieseetesitetesesee e st s s sesoeeeseeenen 22

3.0 Problem Formulation......... .25

3.1 Kalman FIHET .....c.coiviiiiiiiiiiieeeete ettt st 26

3.1.1 Derivation of Kalman filter.........cecoeoeeveiereeceeeereceeeecceeevesiene 26

3.1.2 Application of Kalman filter ...........ccccoeveeeveeeeeeeeeceereceereeeeeeen. 30

3.2 Small Gain Theorem and Heo eStimation .............ccoeeeveveeceeecneeneeeeeneseenene. 33

4.0 Noise Model Uncertainty ........ccceeueee. 35

4.1 Derivation of minimax €StimMator ...........c.ceveveevereeieresreeieesissiseeenesesesneseenen. 35

4.2 Application of minimax eStimator ..........cccceevierereeererererereteeee e 38

4.2.1 WRItE NOISE ....ooveuerieiirriieriiaeietetete et e s e st s aenes 39

4.2.2 WOTSE-CASE NOISE ...eeveurreriereerereererereaeeseieeeseeteeteseeseoseesseseneseeeeeeeaes 40

4.2.3 SInusoidal INPUL.....cceeuieirreiiieieieeete et 42

4.3 SUIINATY ...ooviiiiiiieieriniete ettt et ese et ee s ee s eesasee e eeeeeesresens 44

5.0 Plant Model Uncertainty . 45

‘ 5.1 Derivation of TObUSt fIlteT .....c.coveeveierivirirereeercree et 46
| 5.2 Application without a control signal variation..............c.ce.eeeueuereeeeeerennnnn.. 48
‘ 5.2.1 Uncertainty in plant Model..........cccccccveveveverieeieceeeereeeeeeeeeeeeenn 50
5.2.2 Uncertainty in plant and sensor error models ...........ocoueueeeunnnn.... 52

5.2.3 Uncertainty in sensor error model.............ccoovevevieeevrueeeeeeeenennnn. 53

5.3 Application with control signal Variation..............cocc.eveveeeeeeuemererecreeeeeeenenns 55

5.3.1 Uncertainty in sensor error model...........cocveeveveeeereevereeeeeeeennnnn, 55

5.3.2 Uncertainty in plant model..........cccovovevevivevieeeieeeeeeneeeee e 58

5.4 SUIMIMATY ....ouviieiiiieiinieeteiet ettt ev e e e te e e e e e e e e e see e s eseneas 59




6.0 Conclusion

61

6.1 Summary Of TESULLS ......eoiiriiriieieiitieecr ettt eenens 61
6.2 Suggestions for further WOrk..........ccoovvvieiiriiecirreeneeeeeereeesee e 62
Appendix A Parametric Uncertainty 65
Appendix B Plant Modification .. 69
Bibliography .. w71




2.1:
2.2
2.3:
2.4:
2.5:
2.6:
2.7:
3.1:
3.2
3.3
3.4:
3.5:
3.6:
4.1:
4.2:
4.3:
4.4:
4.5:
4.6:
4.7:
5.1:
5.2
5.3:
5.4:
5.5:
B.1:
B.2:

List of Figures

Schematic of the Space Shuttle Main Engine ..............cccooeeiveeomeeeeeeeeeeeeeessnan. 16
Thrust Profile for SSME MIiSSION ......vvueueuruiieeeieieeceececseseeceeeeee e s en e 17
Normalized rotary valve input to 0pen-100p SYStem ..........coeverueuemereeeeeerereeennnn. 19
Normalized open-loop output for the 80% power level model...........cooovreren..... 20
Output at 80% power level with and without process noise............ceceeeveveverrenen.... 23
Chamber pressure with n0ises added........o..evuruereruerreeeceeeeeeeeeeeeeeee e, 24
Mixture ratio with noises added.........corueueeeeeieeereeeeceeeeeeeeeececee e 24
Block diagram of estimation problem...........c..oveuevevereveeciceeeeeeeeeeeee e, 25
Two-step Kalman filter vs. one-step Kalman filter ...........covvevevueeemeveereeienennn., 29
Kalman filter for the 110% power level model ............oooeeeveeeeceemeenieeeeeeesenann 30
Kalman filter estimates of chamber pressure for a perturbed system...................... 32
Kalman filter estimates of mixture ratio for a perturbed system..............ooo.......... 32
Block diagram of robust estimation problem..................ccvueeemeeeerreeeeereeersrerreennn. 33
Block diagram of estimation problem.............o.oeeueueveveeereeeeeeeeeeeseeeeeeseeeeennnn, 35
Singular values of G With INCIEASING Y ......c.eveveveveeiieeeeeeeeeeeeeee oo 39
Simulated WOrst-Case NOISE INPUL........ceueerreruererereereieeeeseee e etseeeeeeeesesae e 40
Effects of noise in worst case direction on chamber pressure ................ocoeermen...... 41
Effects of noise in worst case direction on mixXture ratio................eveeeveereevnnnn.... 41
Effects of sinusoidal noise on chamber pressure ...............cooveeeeveveeeeresernnnn.. 43
Effects of sinusoidal noise on MiXtUre Tatio ............oceeeuveeeeereeeseeeeeeseeeeeresssereran, 43
Estimation block diagram with uncertainty ...............ooooeeeeeemeereeeeeeereeeen 45
Estimators with degraded sensor model ...............c.ooeveveeeeeereeeeeeeereeeere, 56
Estimators with nominal Sensor MOdel .............ev.ouevvieieeeeeeeeeeeee e, 57
Robust estimator with parametric UnCertainty .............ocoweveevveereereeeeeeeeresenernnnn. 58
Robust estimator with modified plant and parametric uncertainty ......................... 59
Block diagram of additiVe €ITOT .........c.eveuevvieiecieeceeceee e 69
Block diagram of additive error with parametric uncertainty ..............ooovue......... 70




List of Tables

2.1: Discrete-time state-space matrices at varying power levels ........c.ccceceecenencnncnee. 18
3.1: Squared estimation error of Kalman filter at 110% power level ..........ccccoueeenee.n. 31
3.2: Squared estimation error of Kalman filter designed for 110% at 90%................... 31
4.1: Squared estimation error given White NOISE ......c..covererveeeercreriierienienreeneeseeeesrennanas 39
4.2: Squared estimation €Iror given "WOrSt-Case" NOISE .......coeervrreercrrerrenerieererseserssenns 42
4.3: Squared estimation error given 10 rad/sec noise INPUL .....c.ccecvevererirereenericeeenacans 42
5.1: Variances of error for perturbed plant model ..........ccceevveeciirviricencieneiecinie e, 50

5.2: Percent difference from optimal of standard deviation of error for perturbed

Plant MOEL ...ttt ettt st et e 51
5.3: Percent difference from optimal of standard deviation of error for perturbed

plant and SENSOr MOAEIS ........ccuiiiiiiiiiiiiciiciect et 52
5.4: Percent difference from optimal of standard deviation of error for perturbed

plant dynamics (robust filter designed for perturbed plant and sensor error

TOAELIS) .ttt ettt e te e e et e et e e tar e e e seaeteeessaeaessaseesseeenseesssseansneessseeeranenn 53
5.5: Percent difference from optimal of standard deviation of error for bad sensor-...... 54
5.6: Percent difference from optimal of standard deviation of error for nominal

SEIISOT ..eeiuiiiueiiuiieittitiets s st e ae s st s e e e e s e et e s e s st e e s aeeese st e s atesasaeeateestseseeeseaeaneenneant e e st aanne 54
5.7 Percent difference from optimal of standard deviation of error for degraded

SEIISOT .e.ouueiieuerienuetesreeenrteee e stessateesueees s st e eete s ea e e e e s neessee s seesssneaessanssssasnssesansaessaassnnneanans 55
5.8 Percent difference from optimal of standard deviation of error for nominal

SEIISOT ...utiinneeiiiieeaetceete e e s anecsbee st s e s s tae s e beeass e e e et e e s st aeataeesseeeaasaeassaeessnesenseenssessnnesnanes 55
5.9: Squared estimation error for degraded sensor model ..........cccccceevererrcerieeeiennenenn. 56
5.10: Squared estimation error for nominal sensor model ..........coceeeveeevereereerrrerierneenne. 57

10



1.0 Introduction

For many applications, including control systems, fault detection, and model
prediction, it is necessary that states of interest be accurately known for valid results.
Unfortunately, there are multiple reasons why obtaining this knowledge can present
challenges. For example, sensors may not be available to measure the state, or if one is
available, it may be too noisy to trust the measurements it does provide. Observers provide
the necessary link to the states by using the system model and the available state
measurements to estimate the values of all the system's states.

Estimation theory has progressed greatly since Norbert Wiener developed the first
model based estimator at MIT shortly after World War II [22]. Wiener's approach to the
filtering problem, which assumes linearity, is to minimize the mean-squared error between
the signal and its estimate when given known auto- and cross-correlation functions for the
signal and the noise. This was a radical departure from the circuit design filters of the time

[2].

An important breakthrough occurred in the early 1960s when Kalman developed the
state-space equivalent to Wiener's frequency domain filter [14]. Unlike the unwieldy
Wiener filter, the Kalman filter is especially suited to the time domain and digital computer
implementation, an increasingly powerful resource as computer speed increases. Like the
Wiener filter, the Kalman filter minimizes the mean-squared error. In fact, the Kalman
filter is the optimal estimator in the least-squares sense for linear systems with Gaussian
disturbances. Ever since Kalman developed his filter for optimal estimation, it has been the
most widely used tool for estimating the states of a dynamic system in aerospace
applications, such as guidance and navigation and trajectory determination, and has spread
to other engineering disciplines as well. Its impact is not limited to engineering, however;
it has been applied in such diverse fields as economics, geology, and agriculture [21].
Additionally, the Kalman filter has been the basis for many variations, improving its results
for different classes of problems such as smoothing [10], numerical stability [17], and
singular measurements [4]. A modification of the Kalman filter, the extended Kalman

filter, is also used for obtaining suboptimal filters for nonlinear systems [11].

For many applications, though, two major assumptions relied on by the Kalman
filter may be inappropriate. First, the Kalman filter assumes perfect knowledge of the plant
dynamics, leaving no room for modeling errors, unmodeled dynamics, etc. Second, it
assumes that input disturbances into the system are known well enough that they can be
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reduced to being white in nature. For these applications, including the ones examined in
this thesis, these are not necessarily the best, or even valid, assumptions. Thus, the need
for estimators that are robust to both plant and noise model uncertainties arises. Appleby
derived a game-theoretic, continuous-time estimator that is robust to a class of plant and
noise model uncertainties for linear systems at steady state [1]. Mangoubi derived both
discrete-time and continuous-time estimators that can be applied to linear, time-varying or
time-invariant systems defined over a finite or infinite horizon with an arbitrary initial
condition [15].

Robust estimation also improves the performance of vehicle health management
(VHM) systems. In order to reduce life-cycle costs, future aerospace vehicles will depend
on automatic VHM systems to observe the vehicle's subsystems. Not only is VHM
expected to identify any off-nominal performance that occurs, but possibly even
reconfigure on-line to correct for degraded or failed performance. Off-line, VHM recorded
data may warn of impending failure, help with maintenance scheduling, or highlight
possible problems that have not yet surfaced [20]. If the filters used by the VHM systems
are not robust to model uncertainty, the performance will suffer, as either the false alarm
threshold will be unacceptably high, or failures may not be detected promptly. A false
alarm could even result in unnecessarily aborting a mission, and a failure that is not
detected soon enough may cause a disaster. Even in the absence of disastrous
consequences, a poor VHM performance would have the net effect of increasing, rather
than decreasing, associated costs. Therefore, developing estimators that are robust to plant
model uncertainty allows the monitoring of unanticipated conditions that lead to off-
nominal plant operation while decreasing the probability of triggering a false alarm [15].
Estimators robust to noise error extend the range of useful information from a sensor, even
though the sensor may have itself experienced some degradation. This estimator would
also protect against incorporation of highly inaccurate measurements if the sensor does fail
completely. Additionally, the ability of an estimator to be robust to sensor failure would
potentially allow a different design approach to VHM systems, allowing the use of a greater
number of lower quality, but lower cost, sensors, as opposed to a small number of sensors

that are designed at great cost to be highly reliable.

The objective of this thesis is to apply the theory from Mangoubi's work to a
validated model for the Space Shuttle Main Engine (SSME) [6] by building robust
estimators and demonstrating their improved performance over a wider range of operation

when compared to corresponding Kalman filters. The thesis organization follows.
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Chapter Two gives a description of the discrete-time state space models for the
SSME at various power levels derived in [6]. A sample control input and corresponding
outputs for different power levels are replicated from [6]. It also details how the noise

models, both process and sensor, are derived for this thesis.

Chapter Three formulates the estimation problem, followed by the derivation of the
Kalman filter. The Kalman filter is then applied to the SSME models from Chapter 2,
showing advantages and drawbacks to the Kalman filter. Finally, the structure of the Hoo

estimator, and its reliance on the small gain theorem, is presented.

Chapter Four introduces the Hoo/minimax filter solution for discrete-time derived by
Mangoubi for known plant models but unknown disturbances. An Heo/minimax estimator
for the SSME is compared to the Kalman filter for white noise and a "worst-case" noise.
The effects of estimator's parameter, 7, are also demonstrated, and it is shown that the
Kalman filter is a special case of the minimax estimator.

Chapter Five is devoted to the Heo estimation problem for the case where both plant
and noise model uncertainties are present. Two separate cases of engine operation are
considered. First, it is assumed that there is no change in the control input, and the valves
remain in the same position. For this case, the uncertainty is modeled parametrically, and
the Kalman filter is compared to the Hoo estimator for different variations. In the second

case, the control signal is allowed to alter the valve openings. In the control input case the
Kaiman filter and the Ho filter are again compared.

Finally, Chapter Six summarizes the results from the preceding chapters, and offers
some recommendations for further work.

13




2.0 Model Identification

Proper estimator design relies on prior knowledge of the system. Only after
obtaining models for the plant and for the disturbances can one formulate an estimator and
evaluate its performance. In order to build this foundation, Section 2.1 gives a brief
description of the SSME and Section 2.2 describes the state space models for the system.
Since no noise model is included in the system descriptions in [6], noise models are
. generated in Section 2.3.

2.1 Space Shuttle Main Engine

Three Space Shuttle Main Engines comprise the primary propulsion system for the
space shuttle orbiter, but are only used during launch. During usage the engines are
operated at various power levels, identified as percentages of rated thrust levels. After
reaching some predetermined speed the main engines are turned off and the fuel tank is
discarded [13]. After reaching orbit, attitude correction is done with a system of 44 smaller
jets composing the Reaction Control System (RCS). Many of these smaller jets are also
used during re-entry of the orbiter before atmospheric dynamic pressures fully enable the
use of aerosurfaces, making these jets unnecessary. A recent study of estimating the RCS
for vehicle health monitoring during re-entry using aerosurface commands and space
shuttle orbiter dynamic responses is found in [20].

Each of the engines uses liquid oxygen and liquid hydrogen from the external fuel
tank that is attached to the underside of the orbiter during its ascent. Figure 2.1 shows a
schematic of the SSME. To summarize the main fuel and oxidizer flows, the liquids first
enter their respective low pressure turbopumps, and, upon exiting, proceed directly to the
two high pressure turbopumps. The output from each high pressure turbopump is divided
and used for many different purposes. Some of the fuel flow from the high pressure fuel
turbopump, controlled by the main fuel valve (MFV), is channeled into cooling the main
combustion chamber and the nozzle, and returns to drive the low pressure fuel turbopump.
The rest of the fuel is allowed to bypass the cooling flows via the chamber coolant valve
(CCV), and is injected into the preburners. Similarly, some of the oxidizer is sent to the
preburners through the fuel preburner oxidizer valve (FPOV) and the oxidizer preburner
oxidizer valve (OPOV). The preburners, the location of the first stage of combustion,
produce heated hydrogen-rich gas that drives the high pressure turbopumps on its way to
the main combustion chamber. The rest of the oxidizer from the high pressure oxidizer

15




turbopump is controlled by the main oxidizer valve (MOV), which regulates the amount of
oxidizer in the main combustion chamber [13]. The present control system of the SSME
uses these five valves (FPOV, OPOV, MFV, MOV, CCV) as inputs to regulate the mixture
ratio (MR) and chamber pressure (P) in the main combustion chamber. These values are
closely associated with the final thrust produced by the SSME [6].
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Figure 2.1: Schematic of the Space Shuttle Main Engine [13]

Figure 2.2 shows a typical thrust profile for an SSME. The time span between 30
seconds and 90 seconds when engine power levels drop from 100% to 65% rated power
level (rpl) is known as the "thrust bucket." During this time period the orbiter passes
through its highest dynamic pressure. In order to combat the increased structural loading
due to the dynamic pressure, defined by % sz, where p is atmospheric density and V is
shuttle velocity, the shuttle reduces its engine power level. This reduces the gain in
velocity until the density decreases enough through altitude gains in order to safely return
the power level to 104% of rated capacity for approximately the next 400 seconds. During
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this and other periods of constant power level, only small corrective control inputs are
needed to maintain power levels. This is in contrast to the stages where heavy control
inputs are necessary to rapidly change the engine's power level, such as the thrust bucket
and when the engines are throttled back in preparation for shutdown.
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Figure 2.2: Thrust Profile for SSME Mission [18]

2.2 Description of System Matrices

The description of the SSME shows a complex system, so it is important to develop
a model which, while allowing proper estimator design, is simple enough to implement.
The Rocketdyne Division of Rockwell International has developed a full nonlinear model
that completely describes the SSME [19], but the model's size and complexity become
serious disadvantages for design work. Instead of using Rocketdyne's nonlinear model,
the models used in this thesis are the open-loop space shuttle main engine models from the
work completed in [6]. As a simplification, the authors in [7] show that during the "main
stage of operation" the rotary motions of the CCV (B¢cy), the MOV (Bmov), and the MFV
(Bmrv) are essentially decoupled from the outputs. The main stage of operation is the
period following the initial start-up procedures of the SSMEs until shutdown, and includes
the entire mission profile shown in Figure 2.2 (start-up procedures precede the curve in the

figure). This leaves the rotary motion of the two remaining valves, Bppoy and Bopoy, as
the input.

In their derivation, Duyar et al. identified the steps taken to achieve their results. In
order to obtain equations approximating the response of the full nonlinear SSME model,
the nonlinear model response is identified based on its output to a specific input signal.

17




First, a driving signal of pseudorandom binary sequences (PRBS) is selected, with a
separate PRBS used for each input channel. These signals have a clock time of 0.04
seconds, which corresponds to a maximum frequency of 78.5 rad/sec before aliasing
occurs. Since the models are derived from these signals, the validity of the models also is

limited to frequencies less than 78.5 rad/sec.

Next, the simplified models were derived. In their paper, Duyar et al. describe in
detail the methodology they used to convert the nonlinear, continuous-time system

x(t) = flx(®), u(®)]
y(t) = g[x(8)]

to the discrete-time, linear time-invariant models given by

(2.2-1)

5xk+1 = A5xk + B5uk

(2.2-2)
5yk = C5xk

The discrete-time state-space matrices for each of these power levels are in Table 2.1.

Power Level A B C

-0.2553 0.0416| 0.3923 0.0958
0.5044 -0.1108 | 1.0558 -0.2652
1.0218 -0.1130| 0.2584 0.0788
-0.7902 0.5812| 0.5902 -0.2697
-0.1576 0.0257| 0.4068 0.1564
0.2587 -0.0545| 0.9631 -0.6740
0.8759 -0.0666( 0.2574 0.0384
-0.5157 0.4766 | 0.6046 -0.2307
-0.1206 0.0155| 0.4223 0.1546
0.1434 -0.0275| 0.9217 -0.7302 | O
0.8117 -0.0478 | 0.2518 0.0210 | O
-0.4183 0.4226| 0.6288 -0.1779
-0.1279 0.0212} 0.3534 0.0475
0.1994 -0.0508 | 0.6831 -0.6446
0.7816 -0.0565 0.2007 -0.0181
-0.5253 0.4750] 0.5043 -0.1387
-0.0840 0.0026| 0.2416 0.0786
0.1082 -0.0123 | 0.5112 -0.5750
0.7280 0.0181 | 0.1456 -0.0243
-0.4164 0.3330| 0.3593 -0.0780

70% Power 01
00

O O
[y

J—

80% Power

o O
o O
o
—

—
o

90% Power

o O

100% Power

o O
o O
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110% Power

o o
()
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o

O~ OO~ OO~ OO~ OO0~ OO0
— O OO OO OO0 m OO~ OO0

Table 2.1: Discrete-time state-space matrices at varying power levels
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As previously mentioned, the deviation in control inputs, i, in Eq. (2.2-2) are the
rotary motions of the fuel preburner oxidizer valve and the oxidizer preburner oxidizer
valve, given by Brpov and Bopoy. The ouput vector, Sy, has the elements chamber
pressure, Pc, and the mixture ratio, MR. The first and second states are mathematical
states, and do not carry direct physical analogs [9]. The authors repeat the model
identification for five different power levels, and each of the models is valid around the
corresponding equilibrium point. For the remainder of the thesis, the & is dropped from the
state-space equations.

The simplified SSME models in Table 2.1 were used in MATLAB as the plant
models for this thesis. While the models are designed to mimic the high-frequency
PRBSs, Duyar et al. also use a low frequency series of step and ramp inputs (see Figure
2.3) to demonstrate the validity of their linearized models. This series of step and ramp
inputs was also selected as the control input, u, for the MATLAB models. Given this
input, a sample output for the 80% power level model is given in Figure 2.4. This output
agrees closely with the output in [6], indicating that the MATLAB models were indeed the
same as the validated models.
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0.015
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o
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-0.01

-0.015

-0.02

~0.025
0

Figure 2.3: Normalized rotary valve input to open-loop system
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While Figure 2.4 only shows the response for the 80% power level model, all of
the responses for each power level follow the same general shape. It is important to note
that both the inputs and the outputs are already normalized. The normalization is
accomplished according to:

Sl = 2k " Tss 2.2-3)

where i is the operating point, j is the component of the state vector, & is the time step, ss
denotes the steady state value, and, for this equation, x denotes the actual state values (not
the deviations). This normalization equation becomes important later during frequency
response analysis. Since the outputs are normalized to the same order of magnitude, the
singular values will not be distorted by different units (psi for P and unitless for MR).
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Figure 2.4: Normalized open-loop output for the 80% power level model

2.3 Noise Models

The models identified in [6] are for the open-loop system, and do not account for
any noise. In general, this is not a realistic situation. To rectify this drawback a more
typical system is defined as
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'xk+1 = A.xk + Buk + Gdk

(2.3-1)
Ve = ka + Duk + Edk

where dy is some input noise vector. In addition to control input, the states are now
affected by process noise (Gdy). Process noise has many different sources and can
manifest itself in many different ways. Some examples of phenomena that can be modeled
as process noise are unmodeled dynamics, modeling errors, input disturbances (e.g.,
waves against a ship or air gusts on an airplane). In the case of the SSME, a constant
pressure is assumed in the fuel supply. This is not the case, however. As the liquid
hydrogen and oxygen boil, the pressure increases, and the gases must be vented to
maintain the constant pressure. This appears as disturbances to the plant [16]. In addition
to process noise, the measurements are subject to some sensor noise (Edj). Sensor noise
stems from the inability of the sensor to accurately measure the states. Sensor noise can be
from a faulty sensor, one that is improperly located, or from a sensor whose performance
degrades with time or environmental conditions, as is the case in the SSME [16]. In order
to design and compare estimators it is crucial to determine a set of values for these noises.
Since noise models are not present in [6], their derivation is part of this thesis work.

To develop a noise model for use with the MATLAB SSME models, the first
assumption made was to divide the noise vector at each step, dj, into separate process and
measurement noises such that

d, = [W"] 2.3-2)

where wy is the portion of dj, related to process noise and vy is likewise associated with the
measurement noise. Next, an assumption was made to model the noise vector, d, as a
Gaussian disturbance, i.e.,

dy, ~ N(0,\T) (2.3-3)

and the process {d;} is white with unit intensity according to

E[did)] =18 (2.3-4)
where 0§y, is the Dirac delta function
1 k=1
Oy = 2.3-5
Kl {0 Py (2.3-5)
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Furthermore, it is assumed that the process noise and the sensor noise are uncorrelated,

resulting in

GET =0 (2.3-6)

The states and the noises at the same time step, k, are also uncorrelated. This allowed for

further detailing of each type of noise.

2.3.1 Process noise

It was initially decided to only give process noise to the same channels as the
control inputs, defining the process noise matrix, G, as some scalar multiple of B. Since
dy is comprised of both process and sensor noise, this translated into G equal to some
matrix [aB 0]. The process noise corresponds to some degree of uncertainty in the
actuators, or more specifically in this application, there is some Gaussian jitter associated

with the two control valves.

After determining the nature of the process noise and how it enters the system, the
magnitude of G, as defined by o, next became an issue. Since the process noise is
associated with the control input, its intensity was a function of the peak values of the
inputs (which never exceed +0.02). By defining two standard deviations of the process
noise to be 10% of the peak values for the two normalized inputs, the process noise has a
95% chance of being within £0.002 of the control signals. Thus, the standard deviation of
the process noise is 0.001. By setting the constant for multiplying B equal to the standard
deviation (i.e., & = 0.001) the process noise now meets the requirements, and its intensity
was equal to GGT. Figure 2.5 shows the output states without any noise compared to the

states with process noise added.

2.3.2 Sensor noise

After defining the process noise, the next step was to determine the sensor noise,
Ed). Again, with no noise model to work with, several assumptions were made. First, the
measurement noise for each channel was assumed to be uncorrellated with other channels
(as well as the process noise), allowing the basis for the sensor noise matrix, E, to be a
diagonal matrix. Since dj is comprised of both process and sensor noise, this translated
into E equal to some matrix [0 B], where f3 is a diagonal matrix that multiplies vx. Two
different sensor models were then developed, corresponding to "good" and "bad" sensors.
These sensors were purely arbitrary, based on engineering judgment of what "good" and

"bad" meant in comparison to the actual state values.
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Figure 2.5: Output at 80% power level with and without process noise

The good sensor E matrix is defined as two times the identity matrix. In order to
keep the sensor noise and the process noise on the same order of magnitude, E is also
multiplied by o= 0.001. The bad sensor is developed identically except that it is five times

the identity instead of two times the identity. The resulting sensors are therefore

0 0 0.002 0
E ood =

g 00 0 0002 23
0 0 0.005 O } =

E =
bad {o 0 0 0.005

Both sensors have a measurement noise intensity of EET. Figure 2.6 shows the same
output (normalized chamber pressure) as Figure 2.5, but now additional curves show the
effect of the good sensor and the bad sensor. Similarly, Figure 2.7 shows the effect of the
noise on the mixture ratio output.

23




Normalized mixture ratio

Normalized chamber pressure

0.06 T T Y

0.04

o
Q
o

1
©
Q
]

-0.04

—— process noise
- — good sensor
---- bad sensor

~0.06 y
0 2 4 6

12

8 10
time (sec)
Figure 2.6: Chamber pressure with noises added
0-06 1 T T T T
—— process nhoise
0.04r b

0.02

002 .f

-0.04

— = good sensor
----- bad sensor

-0.06 L
0

1
2 4 6
time (sec)

Figure 2.7: Mixture ratio with noises added
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3.0 Problem Formulation

The linear models described in the previous chapter can now be used to derive the
desired filter. In Section 3.1 a derivation of the Kalman filter as a solution to its associated
estimation problem is presented with results showing its optimality for perfect knowledge
of the plant and noise models as well as its limitations when given a perturbed system.
Section 3.2 develops the framework for the Hoo estimator as an alternative to the Kalman
filter.

d—»P e

=
<

F

Figure 3.1: Block diagram of estimation problem

In general, the estimators have the structure in Figure 3.1. The plant, P, is given
some input disturbance vector at time k, d, and possibly also some control input, u;. The
filter, F, uses the output of the plant, Y. (and knowledge of the control input if applicable)
to generate state estimates, X, , by incorporating those measurements into some knowledge
of the plant. An additional output is the error vector, ¢4, which is a weighted difference
between the actual states and the estimates according to

ek EM(xk —.ik)

3.0-1

where the error observation matrix, M, is an arbitrary matrix. M can be adjusted to select
only certain states, a combination of states, or even to weigh certain states more heavily
than others. This error vector can be thought of as a performance vector. It is important to
note that the estimate can be obtained at two different points in time associated with the time
step, k. It can be determined before the measurements at time k, yx, are incorporated (a
priori), or it can be determined after incorporating yi (a posteriori). In this thesis all
equations are given in a priori form unless otherwise noted with a "super +" indicating that

the equation is a posteriori.
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3.1 Kalman Filter

The Kalman filter is perhaps the best known estimator for states of linear dynamic
systems, spanning both time and disciplines in its applications. Itis a recursive (meaning
that there is no need to store past data) filter that is the optimal estimator in a least-squares
error sense for linear Gaussian systems where plant dynamics and disturbance statistics are
known. This means that the mean-squared error is minimized over some time period. Put
another way, the Kalman filter minimizes the expected value of the estimation error 2-norm

for at finite time interval [1, N]

N
Ellel3] = E[z e,{ek:| (3.1-1)!
k=1

which can be reformulated as

8 S e} |- e )

k=1 (3.1-2)

where the error vector is defined above and cov denotes the covariance matrix of e;. When
converted into the frequency domain, the steady-state Kalman filter also minimizes the Hy-

norm of the transfer function from the disturbance to error [1].

3.1.1 Derivation of Kalman filter

This derivation of the Kalman filter does not include any control signal, u,
although it is easy to show how the Kalman filter accounts for it.

The equation below represents the system associated with Figure 3.1,
e | |4 |G 0 %

e |=|M, |0 -M|d, (3.1-3)
Y Ce | Ex 0 | %

with the system and noise matrices defined in Chapter 2. At each time step the actual

unweighted estimation error is the difference between the state and the state estimate,

Transposes of vectors and matrices will be denoted by a superscript T. The "prime” symbol will be
reserved to denote some alteration to the original matrix.
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%=, -3 (3.1-4)

Assuming that the estimator is unbiased, the associated error covariance is defined as
P, = E[%%"] (3.1-5)

The a posteriori filter uses an additional measurement to improve the estimate according to
the form

=5+ K= F)

: A (3.1-6)
=X + K (y — G %)

where Ky is some undetermined gain. The updated error equation from Eq. (3.1-4) and
Eq. (3.1-6) becomes

.i'z- = xk —.’X\‘k —Kk(yk - Ck'ik)

! (3.1-7)
= (I-K,C)%y — K, Eyd,

This updated error can then be used to solve for the updated error covariance (recognizing
that a priori error and noise are uncorrelated)

P} = E[x,;‘z,f]
= E[{(I - K.C )% - Ky Ed H(1- K,.C )%, - KkEkdk}T] (3.1-8)

=(I- K )P (1 - K, ) + K EETKT

The covariance is now quadratic in K. Since the trace of the covariance matrix represents
the total squared error it is the value to be minimized. By setting the derivative of the trace
of P} with respect to K to zero the optimal K can be determined (that is, the gain that

minimizes the squared error). Using the property in [11] that

o"[trace(ABAT)]
N *=2AB (3.1-9)
this derivative is
+
AracePi)) _ 21~ K, COPCT +2K,EE] G.1-10)

K,

Setting Eq. (3.1-10) equal to zero and solving for K} yields
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-1
Ky = PCl (CLP.CY + EEY ) (3.1-11)

This is known as the Kalman gain matrix and is the gain that minimizes the squared error of
the estimates. Substituting this K back into Eq. (3.1-8) reduces to

P; =(I-K.G )P (I - K G)' + K ELEL KL
= (I—chk)Pk

(3.1-12)

Since the second term, KxCiPr, is positive semidefinite, a measurement will at the worst
cause no change in the error covariance (which would happen, for instance, when Ej — o0
so that K = 0). Since this would be extremely unlikely , the measurement normally
reduces the error covariance. This is intuitive--the measurement should add some
knowledge of the system which in turn the filter uses to improve its estimate.

After updating the current time step with measurements, the estimate is propagated
to the next time step, k+1, according to

Rps1 = AL (3.1-13)
which leads to the new updated estimation error
K1 = Xpa1 ~ Fiert (3.1-14)
Substituting Eq. (3.1-3) and Eq. (3.1-13) into Eq. (3.1-14) yields the error dynamics

Xpi1 = Ay + Gpdy — A Xy

~ (3.1-15)
= Akxk + dek

Noise is not included in the estimator due to its zero-mean unbiased nature. The associated

error covariance matrix becomes
Py = E[ik+17~‘k+1T]
= [(Akik + dek )(Akik + dek )T] (3 1-16)
= AkPkAT + GkGZ

The Kalman filter is comprised of Equations (3.1-6), (3.1-11), (3.1-12), (3.1-13), and
(3.1-16).
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Figure 3.2: Two-step Kalman filter vs. one-step Kalman filter

This two-step process of updating and propagating can be merged to form a
Kalman filter with only one step for each time step. Figure 3.2 shows the conceptual
difference between a one-step filter and a two-step filter. By combining Eqs. (3.1-6) and
(3.1-13) the one-step filter equation is

X =A X +K -G X
Bt = Ae(Re + Ky (% ) ee) (3.1-17)
= (Ak —AkKka)xk + A Ky

Likewise, by substituting Eq. (3.1-6) into Eq. (3.1-15), a one-step error equation can be
obtained

'ik+l =Akxk+dek"Ak[£k+Kk(yk _ijek)] (3.1-18)
= (Ac = A& C )3, + (G = AKLEL )y

Incorporating the matrix A and the Kalman gain matrix into a new Kalman gain matrix,
Ky, gives

Zer1 = (A — KiC )Ry + KLy

) e , (3.1-19)
S = (A~ KiC )%y +(G, — K{E, )dy
This gives a one-step error covariance equation as
Py = E[{(Ak ~ K{C )% + (G — KiE ) H(Ay - K{C)%, +(Gy ~ KLE, )dk}T]
= (4 — K{C, )P, (4, ~ K{C,)| +(Gy ~ KiE )Gy — KiE )T (3.1-20)

= AkPkAz + Gké{
The one-step Kalman filter is formed by Egs. (3.1-19) and (3.1-20), and should give the
same results as its underlying two-step relative.
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3.1.2 Application of Kalman filter

The Kalman filter is now applied to the SSME models obtained in Chapter 2. Since
the matrices from Chapter 2 are time invariant, the subscript k£ can be dropped for the
matrices (although it must be retained for the vectors). When the models are fully known
the state and error can be combined to form an augmented system of the form in Eq. (3.1-
21). It can be clearly seen that there is no interaction between the states and the estimation

Xk+1 _ A 0 X B G U
[ik+lJ_[0 A—Kfc}[;ck}+[0 G_K,E][dk} (3.1-21)

Using the 110% power level as the nominal system (now with some control

€ITOr.

signal), the results of its corresponding Kalman filter can be seen in Figure 3.3. Even in
the case of a Kalman filter designed for the bad sensor the estimation error is minimal as it
relies on an accurate model. So when the models are known, the Kalman filter does an
excellent job of estimating the states. Table 3.1 summarizes the squared error over the 12
second time span for each state for two different Kalman filters, one for the good sensor
model and one for the bad sensor model.
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Figure 3.3: Kalman filter for the 110% power level model
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State Squared error
Kalman Filter designed | Chamber Pressure 0.0483 x 10-3
for good sensor model | Mixture Ratio 0.2034 x 10-3
Kalman Filter designed | Chamber Pressure 0.0514 x 10-3
for bad sensor model Mixture Ratio 0.2117 x 10-3

Table 3.1: Squared estimation error of Kalman filter at 110% power level

The Kalman filter's limitations become apparent, however, when the system it is
trying to estimate is not the one for which it is designed. The Kalman filter, still believing
it is estimating the nominal system, does very poorly when the actual system is some
perturbed system. The augmented dynamics, now with a perturbation in A, are shown in

Eq. (3.1-22).
A+M 0 B G
et | N g | (3.1-22)
Xk+1 AA A-K'C Xk 0 G-KE dk

Even if AA is small, the Kalman filter is designed for A, and will not be the optimal
estimator for the perturbed system. The equations for the Kalman filter in the previous
section provide no method for incorporating the AA in the lower left corner in the
augmented matrix. This is when the Kalman filter's limitations become apparent. The
error increases in magnitude as more matrices are perturbed (i.e., some AB, AG, AC, etc.
exists in addition to AA) and the perturbations for each matrix grow.

Figures 3.4 and 3.5 show the performance of the Kalman filter designed for the
110% power level model with a good sensor when the actual system is at 90% power level
with a good sensor (thus, according the matrix definitions of Chapter 2, incurring some
AA, AB, AG, and AD). Table 3.2 displays the squared error. Compared to the error in
Table 3.1 the error is much larger (which is also readily seen in both figures). The Kalman
filter can never adjust to the perturbed system, especially to the AB term, and is often closer
to the nominal plant (for which the Kalman filter was designed) than to the output from the
actual perturbed system. It is errors such as these that the Hoo estimator hopes to address

by building in robustness to perturbations.

State Squared error
Perturbed Kalman Filter | Chamber Pressure 0.0437
with good sensor Mixture Ratio 0.0458

Table 3.2: Squared estimation error of Kalman filter designed for 110% at 90%
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Figure 3.4: Kalman filter estimates of chamber pressure for a perturbed system
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3.2 Small Gain Theorem and He. estimation

An alternative to Kalman filters is to use Heo estimation, a form of robust estimation
that allows for uncertainties in the models, Figure 3.6 shows the robust estimation
problem. Now the A-block represents the uncertainty in the models, with € and n
representing the interation between the uncertainty and the plant, P. The goal is to
minimize some induced norm for the transfer function, G, that is from the the disturbance,
d, to the error, e, for all possible perturbations in A.

A

d——-——: P —

=
<

F

Figure 3.6: Block diagram of robust estimation problem

Estimators concerned with the Heo norm rely on the small gain theorem [3] for their
performance guarantees. The small gain theorem states that a stable open-loop system will
have a bounded induced norm if its feedback loop is composed entirely of operators whose
induced norm are each less than one. The definition of an induced norm (a vector norm
extended to matrices but still defined in terms of vector norms) is

Jal,, =sup A,

3.2-1)
x0 2],

where A is a matrix, x is a vector, and p is the "order” of the norm. Since the plant is a
linear, time-invariant system, the norm of interest in this thesis is the ©0-NOrm, or

"G”w = sup O'max (G(J a)))
4]
3.2-2)

.
=SB

The estimator problem over a finite time interval [1, N] now becomes that of finding
estimates X,,k=1,2,...N such that
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"—eﬂi <y Vd (3.2-3)

It is important to note that even though the system used in this thesis is time-invariant the
theory that follows is applicable to time-varying systems with arbitrary initial conditions.

Compared to the Kalman filter, Hoo estimation is still in its infancy. The first state-
space solution to the Hoo control problem was introduced in 1984 [12]. This theory was
computationally difficult, and required higher order compensators. Further advancements
were made by 1989 when Doyle, Glover et al. achieved a state-space solution that required
two Riccati equations [S]. Previous to 1995, the Heo estimation problem had only been
developed for linear time-invariant systems at steady state [1]. Mangoubi, however, was
able to derive filters that are robust to general classes of model uncertainties for both
discrete and continuous-time applications [15]. The filters can be developed for time-
invariant or time-varying systems over a finite or infinite-time horizon. The generality of

the filters in [15] also includes arbitrary initial conditions.
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4.0 Noise Model Uncertainty

In the previous chapter, the strengths of the Kalman filter when the noise and plant
models are known were highlighted. The weaknesses of the Kalman filter were also
shown for improper knowledge of the plant model. In this chapter, the plant is assumed to
be known perfectly, but the noise model is uncertain. This allows for the derivation of an
estimator that is designed to minimize the error when worst-case noise is present. Other
than the noise having a bound on its 2-norm, there are no assumptions in the derivation.

d——>P e

2

F

Figure 4.1: Block diagram of estimation problem

4.1 Derivation of minimax estimator
As in Chapter 3, the given system is defined in Figure 4.1 and Equation (4.1-1).

Y| A G 0 ix
ek = Mk O —Mk dk (4.1-1)
Yk C 1B 0 |%

Although the equations and results for this chapter include a control input, «, this equation
can be easily modified to include u as well. The new vectors for including a control signal
are in Eq.(4.1-2).

(4.1-2)

This translates into the altered system matrices of
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lot G 4.1-3
k('—o (4.1-3)

D, E
D, « ko Tk
I 0

In general, an Heo estimator seeks to find an estimate, X, such that

el
sup—=~ <Y (4.1-4)
a=0 |d],
“where
er = My (x, — %) (4.1-5)

and dj, is the disturbance input vector. This is equivalent to
2
%<y2 Yd#0 (4.1-6)
lllz
A full derivation of the minimax Heo estimator that also includes the initial conditions in the
norm constraints is in [15]. A cursory explanation of the solution to the problem is given
here. By rearranging Eq. (4.1-6) and defining the performance criterion, J, as
2 2012
J=lely =7 ld; <0 Vd=0 (4.1-7)

a game-theoretic formulation of the problem can be defined as

min max J (4.1-8)
x d

subject to the dynamic constraints in Eq. (4.1-1). Furthermore, it is shown in [15] that if
the Riccati equation

Pes = (A~ KeG) B (A — KiCe)' +(Gie— KiEi )G - KE) (4.1-9)
= Aka_IA]Z +Gkélz-'

where
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=12 = el

(4.1-10)
-1
Ky =[GiEL + Al C | ELET + G CT |

has a solution such that Hj is positive definite, then an estimator exists that satisfies

*

J <0 (4.1-11)

which means that the desired bound of Eq. (4.1-4) is satisfied. This estimator follows the
form

Rra1 = (4 — KiCe )y + Ky (4.1-12)

This has the same form as the one-step Kalman filter in Eq. (3.1-19). This leads to the
error dynamics

Xps1 = (A — K, G )% +(Gy — K Ey )y
= A%, + G d, (4.1-13)

e = My X,

which, again, have the same form as the one-step Kalman filter in Eq. (3.1-19). By earlier
definitions of Gy and Ej, the noise is uncorrelated (i.e., GiE;T = 0), simplifying the gain in
Eq. (4.1-10) to the form in Eq. (3.1-11). The theory is not constrained to only
uncorrelated noise, though. The above filter gives the a priori estimate; the a posteriori
estimator can be found in [15]. This Heo solution also follows the property of

IGl.. <y (4.1-14)

By decreasing ¥ in Eq. (4.1-10) to as small a value as possible before H; violates the
positive semi-definite bound, the Hoo minimax estimator is obtained. This estimator has
the smallest possible Hoo norm, but at an increased Hj cost (indeed, as Y approaches the
minimum %, the H, cost continues to increase).

On the other hand, as ¥ — e the second term in Equation (4.1-10) approaches
zero. When this happens H) s P, which results in the solution to the Riccati equation
(4.1-9) being the true error covariance matrix and the gain in Equation (4.1-10)
approaching the optimal gain. In other words, the Heo estimator with yat infinity becomes
the Kalman filter. This allows for yto be thought of as a design parameter. By selecting
Ymin» the Hoo norm is minimized (but at a great Hj cost), while letting y= e optimizes the
H; norm but doesn't allow for any disturbance model error.
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There is another design parameter besides ¥, though. While

e, = My, (4.1-15)

for both the Kalman filter and the Heo estimator, M does not affect the Kalman filter gain
matrix while it does for the Hoo estimator via Eq. (4.1-10). This allows the design
engineer to select an M that emphasizes certain states of interest, although this emphasis

does come at a cost in terms of the estimation error of the other states.

4.2 Application of minimax estimator

The example used in this section is for the SSME at the 90% power level model
with the observation matrix, M, set to the identity. In order to keep B and G on the same
order of magnitude (and thus avoid numerical problems) the input signal was multiplied by
1000. Since the system is linear, by subsequently dividing the output signal by 1000 a true
relationship is found. The %;, for the system is 2.0310 x 10-3. The singular values for
the transfer function G can be seen in Figure 4.2. The plot clearly shows that as y
increases the minimax estimator approaches the Kalman filter. By 100%,;, in this case the
Kalman filter solution has been reached. Also clear in the graph is that the Hoo-norm of the
minimax estimator is lower than the Kalman filter's Hoo-norm, but the Hp-norm of the
Kalman filter is much lower than the minimax estimator (the minimax Hy-norm approaches
infinity since the logarithmic scale gives the illusion of understating the area under the curve
at high frequencies). True to the minimax theory, the Hoo optimal solution gives

IG]l =2.03096 102 <2.0310x 10~
=-53.85dB

(4.2-1)

For this example, the graph of Figure 4.2 suggests that a possible compromise between the
H; and the Heo lines is to choose Y= 1.1%in. As the plot shows, the Heo performance

provides some additional protection for unknown disturbances compared to the Kalman
filter while the H; performance is fairly close to that of the Kalman filter. The effectiveness

of the observers becomes apparent when the system is subjected to some noise.
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Figure 4.2: Singular values of G with increasing y

4.2.1 White noise

The first simulation of the Hoo minimax estimator involved giving the system white

noise. The squared error for the 5 second run is summarized in Table 4.1.

State Squared error

Kalman filter Chamber Pressure 0.0518 x 103
Mixture Ratio 0.2277 x 10-3

Heo estimator Chamber Pressure 0.0821 x 103
for Yuin Mixture Ratio 0.2900 x 10-3

Table 4.1: Squared estimation error given white noise

As expected, the Kalman filter has less squared error than the minimax estimator. Since the
noise input is white and the models are known perfectly, the Kalman filter is the optimal
estimator in this situation. The minimax estimator is not designed for a white noise input,

however. It is designed to protect against the worst possible noise at each time step. The
value of this protection is readily apparent in the next section.
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4.2.2 Worst-case noise

When the noise is not pure white noise the results are dramatically different. When
the system is given some noise input that is in the worst-case direction, the minimax

estimator is clearly superior. It is shown in [15] that the worst-case noise can be defined as

dy = Bl Piii % (4.2-2)

The noise depends on future information, which is clearly not yet available. Instead it was

assumed that
d,=B"P %, (4.2-3)
where
%, =A% +Bd,_; (4.2-4)

would sufficiently simulate the disturbance in Eq. (4.2-2). While this noise did
approximate the worst-case noise sufficiently to show that the minimax was better able to
handle the disturbance, the true worst-case noise would have produced even larger errors

for both estimators. The approximation of the worst-case noise when given an initial error
(i.e., Xy #0) can be seen in Figure 4.3.
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Figure 4.3: Simulated worst-case noise input
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Figure 4.5: Effects of noise in worst case direction on mixture ratio
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The effects of this noise on the estimation error can be seen in Figures 4.4 and 4.5,
and the squared estimation error over the 5 second simulation is summarized in Table 4.2.
In both Figure 4.4 and Figure 4.5, the estimators are converging to a biased value.
However, the Kalman filter's bias is greater for both states than the bias present in the
minimax estimator. Thus, the sum of the estimation error for the Kalman filter will

approach infinity much faster than for the minimax filter.

State Squared error

Kalman filter Chamber Pressure 0.3967 x 103
Mixture Ratio 1.3257 x 103

Minimax estimator | Chamber Pressure 0.3699 x 10-3
Mixture Ratio 1.0260 x 10-3

Table 4.2: Squared estimation error given "worst-case” noise

While the minimax estimator is clearly superior for the worst-case noise, this
noise's dependence on the future renders it physically impossible. However, systems may

approach this noise, and the minimax estimator would demonstrate its value.

4.2.3 Sinusoidal input

In this section a new noise was created based on a sinusoidal input with a frequency
of 10 rad/sec. Each channel's phase was allowed to vary by up to /2 from each other.
This is a more realistic noise since it does not depend on future events. Instead, it can
represent real noise in the system dynamics (for example, the FPOV and OPOV oscillating
at 10 rad/sec). The results can be seen in Figures 4.6 and 4.7, and the squared error over
the 5 second simulation is shown in Table 4.3. Even though the minimax is specifically
designed for the worst-case noise, the results clearly show that its estimation error for both
states is less than the Kalman filter. The Kalman filter, designed to minimize error when
the system is given white noise, cannot handle the colored noise without additional

modeling (such as a shaping filter) as well as the minimax estimator.

State Squared error

Kalman filter Chamber Pressure 0.0207 x 103
Mixture Ratio 0.3696 x 10-3

Minimax estimator | Chamber Pressure 0.0177 x 103
Mixture Ratio 0.2606 x 103

Table 4.3: Squared estimation error given 10 rad/sec noise input
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4.3 Summary

When the noise model is known well the Kalman filter is the optimal estimator in
the least-squares error sense. However, noise models are not always known completely.
An estimator that minimizes the ce-norm of the transfer function from the worst-case
disturbance to the error can be derived, and when this worst-case noise is given to this
estimator and the Kalman filter, the Hoo minimax estimator is superior. The disturbance
does not need to be in the worst-case direction for the minimax estimator to show its worth,
however. Using the minimax estimator on an unexpected sinusoidal input produces less
estimation error than the Kalman filter designed for the nominal white noise. There are
trade-offs associated with using the Heo minimax estimator, though. It's H, cost
dramatically increases compared to the Kalman filter. Thus, a compromise between Hj and
Hoo performance can be found by varying 7.




5.0 Plant Model Uncertainty

In the previous chapter, noise model uncertainty was examined. An estimator was
designed that is able to handle the noise in the worst-case direction better than the Kalman
filter is. While robustness to noise is important, robustness to plant model errors is even
more important. Very rarely are physical plant models known completely, rarer still are
they linear; even if the knowledge is complete, often the dynamics are truncated due to the
model's large size. In this chapter, the uncertainty shall be expanded from just the noise
model to the plant model as well. Figure 5.1 shows the new form with the A-block now
encasing all of the uncertainty.

A

d—-—-—.——»P e €

P
<

F

Figure 5.1: Estimation block diagram with uncertainty
This open-loop system corresponds to the state-space model

Y| |4 S G 0 QIx
& _ S [0 L, 0 un (5.0-1)
€ Mk 0 0 _Mk dk )

Yk G |R E, 0 ]|%

As in Chapter 4, the system can be modified to include a control input, uy, by following the
format found in Eqs. (4.1-2) and (4.1-3). Section 5.1 derives the robust filter, followed
by application of this theory to systems with only noise input (Section 5.2) and systems
with both noise and control inputs (Section 5.3).
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5.1 Derivation of robust filter

Once again, the complete derivation of the robust filter is found in [15]. The robust
estimator seeks to bound the Hoo-norm of the transfer function, G, from the disturbance,

d, to the estimation error, e. This is to take place for all possible model perturbations, A,
that have a bounded induced 2-norm. Based on this, a performance criterion, Ji, can be
defined.

2

sup J; = 72
(dmo ' |l 510
, Ik 1 |
VA3||A“2 = sug——7<——2
20 [lgl; v

Now the approach changes slightly from Chapter 4. The output from the perturbation, 7,
is treated as an additional input signal, and is grouped together with the disturbance, d.

The combined exogenous signal is

d; =[Z}’:] (5.1-2)

Likewise, the input to the perturbation, &, is treated as an additional error signal. This

allows for the merger of the system matrices according to

B =[Q Gl
D,=[R, E] (5.1-3)
T, =[0 L]

The performance criterion for this augmented system is defined as

sup J, < ¥? 5.1-4
(d,%;eo 2 <7 ( )

where

el +lel 5.1-5)

2 4
(=0 ]df} +|nl;

Eq. (5.1-5) is the condition for robust performance (small gain condition). Although initial
conditions are not included in Eq. (5.1-5), the full derivation in [15] does account for them.
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Converting Eq. (5.1-5) into a game-theoretic problem and defining a new performance
criterion yields

minmax J; (5.1-6)
X d,n
where
75 = lell; +lell; - 7* (1l + 115 (5.1-7)

subject to Eq. (5.0-1) and Eq. (5.1-3).

The solution to this robust estimation problem requires two Riccati equations to be
solved [15]. Provided the first Riccati equation

T , 1 —15-1
Xk = Ak Xk+1Ak +SkSk +"77Fka Fk

(5.1-8)
XN = 0
has a solution such that X; > 0, where
Fk = S]ZTk +A{Xk+lBk
11 T (5.1-9)
Asﬁ;ﬂhh+&Xm&)
then it is possible to transform Eq. (5.0-1) and Eq. (5.1-3) into the new system
X1 = Ax, + B d,
TR T (5.1-10)
Vi = Cexy + Didy,
with
A=A +LszZI:1FkT
Y
B, =B z;'?
e (5.1-11)

G =G +L2DkZ;1FZ
Y
D, =D.z;"?

where the new disturbance is defined by
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Y (5.1-12)

The problem of optimizing is exactly the same as the one treated in the previous chapter.
This problem, therefore, has a solution provided the second Riccati equation

Py = (A - K.C)H; I(Zk - KkEk)T +(B, - KD, )(B,. - K, D,
1 (5.1-13)
Hy =P, _?z'MkMk

has a solution such that H, >0. Thus, the solution also takes on the familiar form of

'ik+l =(Zk—1?k(_:k)£k+fkyk (51-14)
with the gain
— [= =7 — —=1=71[= =T = =-1=T1"
K, =[B.D{ + AH;'C/ |[D.D{ +CeHy xed (5.1-15)
The 7in Eq. (5.1-8) and the yin (5.1-13) are the same. While this initially appears to be a
limitation, the second term in the equation for H, can still be altered by varying M during

the design of the estimator. After the estimator design is complete, a new M can be
chosen for the analytical comparison between the Kalman filter and the robust estimator.

5.2 Application without a control signal variation

This section is deals with the case with no change in the control input, u--instead
the disturbance, d, is the only true exogenous signal. Also, once again, the SSME models
are time-invariant, thus the subscript k's may be dropped from all of the matrices in the

above derivation.

In order to use the robust estimator, it is necessary to develop some model of the
uncertainty for the estimator to be designed around. In this section all of the uncertainty is
modeled parametrically. A description of how to achieve the desired matrices needed to
complete Eq. (5.0-1) through parametric uncertainty is given in Appendix A. The
parametric uncertainty for the SSME models could be achieved many different ways, but in
this analysis two primary modeling methods are used. One was to take the difference
between two models and use that as the uncertainty for each matrix; for example, AA =
Apert - Anom, Where the nominal system is the 110% power level model and the perturbed

48




system is, say, the 90% power level model. The other method is to add some fixed
percentage of the matrix back to the nominal case to achieve the perturbed case, such as
Apert = 1.10A,om. This creates a AA of 10% of A,,,. Sensor uncertainty is always
modeled as either AE = Ej,,,; - Egooa 0r AE = 0. Since C has no dynamics imbedded within
it (it simply draws the values of the last two states) it was never given any uncertainty. The
nominal base system for each case (in both this section and the following section) is the
110% power level model; the sensor quality for the nominal system is allowed to change
for the different cases.

The results of this section are given mainly as statistical analysis. One can readily
see the differences in filter behavior by examining responses to the white noise input with
this analysis. While time simulation data would offer the same conclusions, the filter
differences are more difficult to observe from time history plots. In order to compare the
robust filter and the Kalman filter the steady-state error covariances from the robust filter
and the perturbed Kalman filter must be calculated. This is accomplished using
Lyapunov's equation on the augmented dynamics. By creating the augmented system of

Xk+1 A 0 Xy B
. =| _ — el ] — dk
Xp+1 KC A-KC | x, KD (5.2-1)

= Aaug xkaug + Baug dk aug

states and estimates

the estimator error can now be defined as

Xk
=M -M]| .
% [ ][xk} (5.2-2)

= augxkaug

By using these augmented matrices in Lyapunov's equation the true estimation error
covariance matrix is

Y=A YAl +B BT

aug a:g augPaug (5.2_3)
P = CaugY Caug

For each example in this section the data is organized into tables comparing the Kalman
filter and the robust filter.

49




5.2.1 Uncertainty in plant model

The first application of the robust theory is made only to uncertainties in the A and
G matrices (corresponding to uncertainty in the plant dynamics and system input models)
with a good sensor. As in Chapter 4, this disturbance signal is premultiplied by 1000 and
the outputs are divided by 1000 to keep the matrices' order of magnitude equivalent. The
design uncertainty bound for the A and G matrices is 15% (i.e., AA = 15A,,m). Since 7is
set to 1 x 106, the choice for M needed to affect Eq. (5.1-13) is also very large. In this
case, improved results were obtained by setting

x(3x10%) (5.2-4)

2

After obtaining the filter gain, K, the dynamics of the estimator are fully determined.
Changing M to the identity matrix for analysis does not affect the estimator's performance,
but it does allow more meaningful comparisons to be made between the Kalman filter and
the robust filter, as well as comparisons of performance between different robust
estimators. Thus, M is set to I for analysis.

State Kalman Filter | Robust Filter | Optimal Filter
70% Power Chamber Pressure | 0.0816 x 10-5 | 0.0751 x 10-5 | 0.0723 x 103
Level Mixture Ratio 0.2180 x 105 | 0.2068 x 10-5 | 0.2036 x 10>
80% Power Chamber Pressure | 0.0755 x 10-5 | 0.0709 x 10-5 | 0.0691 x 10>
Level Mixture Ratio 0.2431 x 10-5 | 0.2297 x 10-5 | 0.2252 x 103
90% Power Chamber Pressure | 0.0681 x 10-5 | 0.0640 x 10-5 | 0.0633 x 10->
Level Mixture Ratio 0.2321 x 105 | 0.2211 x 10-5 | 0.2186 x 10
100% Power | Chamber Pressure | 0.0376 x 10-5 | 0.0375 x 105 | 0.0370 x 10-3
Level Mixture Ratio 0.1491 x 105 | 0.1459 x 10-5 | 0.1454 x 105
110% Power | Chamber Pressure | 0.0225 x 10-5 | 0.0242 x 105 | 0.0225 x 10°
Level Mixture Ratio 0.0836 x 10-5 | 0.0874 x 10-5 | 0.0836 x 105

Table 5.1: Variances of error for perturbed plant model

In Table 5.1, the variances from the diagonal of the error covariance matrix, P,

for the different estimators are displayed. The column entitled "Kalman Filter" gives
results for the case where the Kalman filter designed for the nominal case (110% power

level model) is used at all power levels. The robust filter column is the robust Heo filter
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designed for the nominal case with some uncertainty bound and then applied to the
perturbed systems. In the last column, the optimal filter is defined as the Kalman filter for
the perturbed system. This optimal filter represents the theoretical limit of performance,
that s, the least-squares error, for the perturbed system--no filter will be able to outperform
it.

Using the standard deviations from these variances, calculated by +/ diag(Pi), the
following percent difference table was assembled by calculating the percent difference of
the standard deviation of the errors according to

_ ~0pt
% difference = [Mj %100 (5.2-5)

opt
Gmodel

where opt denotes the optimal filter defined above and model denotes the particular power
level of the perturbed system. All percent difference tables in this chapter were calculated
using the same methodology.

State Kalman Filter Robust Filter
70% Power Level | Chamber Pressure 6.2972 1.9759
Mixture Ratio 3.4795 0.7765
80% Power Level | Chamber Pressure 4.5297 1.2656
Mixture Ratio 3.9119 1.0067
90% Power Level | Chamber Pressure 3.6626 0.5291
Mixture Ratio 3.0582 0.5797
100% Power Level | Chamber Pressure 0.8399 0.6551
Mixture Ratio 1.2631 0.1620
110% Power Level } Chamber Pressure 0 3.6953
Mixture Ratio 0 2.2269

Table 5.2: Percent difference from optimal of standard deviation of error for perturbed plant model

Table 5.2 shows the results for two filters. Since the nominal system is 110%
power level, the Kalman filter at 110% is the optimal Kalman filter (it has perfect model
knowledge for the plant and the noise). Therefore, its 0% error is expected. The robust
filter sacrifices 2% and 3% for the two states at 110% though, from the uncertainty in the
filter design. It more than makes up for that small error at other power levels, though. At
each power level other than the 110% model the Kalman filter's performance is worse than
the robust Heo filter. The results are most apparent when larger perturbations appear in A
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and G, such as at the 70% power level. There the robust filter estimation error is less than

a third of the size of the Kalman filter's error.

5.2.2 Uncertainty in plant and sensor error models

Now, in addition to uncertainty in A and G, some uncertainty is added to the sensor
error model, changing E. The sensor uncertainty is designed around the bad sensor, and
the plant model uncertainty is 5% off of the nominal 110% power level model. The
Kalman filter is designed for the good sensor. As in the previous sub-section, yremains at
1 x 106, and robust performance improvs by changing M for the filter design. In this case
the design M is

M =1x(2x10%) (5.2-6)
Similar to the last section, M is again reset to identity for the analysis.
State Kalman Filter Robust Filter
70% Power Level | Chamber Pressure 1.7802 0.3398
Mixture Ratio 0.8499 0.1400
80% Power Level | Chamber Pressure 2.4987 0.5544
Mixture Ratio 0.6185 0.1124
90% Power Level | Chamber Pressure 2.5985 0.5544
Mixture Ratio 0.7662 0.1007
100% Power Level | Chamber Pressure 8.0531 3.2068
Mixture Ratio 2.5423 0.7374
110% Power Level | Chamber Pressure 17.5125 8.4851
Mixture Ratio 7.8384 3.3665

Table 5.3: Percent difference from optimal of standard deviation of error for perturbed plant and sensor
models

The first simulation was performed with the bad sensor model. Table 5.3 shows a
dramatic degradation at the 110% power level model for the Kalman filter with a perturbed
sensor error model. The standard deviation of error of the chamber pressure estimate is
now more than 17% larger than the optimal Kalman filter's standard deviation of error for
the perturbed system. The robust filter shows the value of adding the uncertainty--not only
is it dramatically better at 110%, but at each power level it remains better than the Kalman
filter designed for the nominal system. By presenting the above data in the form of the
percent difference table an interesting trend emerges. The Kalman filter error appears to

actually decrease as the plant gets farther away from the nominal system. While this is true
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for the percent difference, the absolute variance data shows that the Kalman filter does
indeed get worse as the plant progresses beyond the nominal plant. However, the
variances of the optimal filter for the off-nominal power levels increase dramatically.
Although it is a different case, this trend can be seen in the last column in Table 5.1. Thus,
the percent difference for the nominal system is greater since the variances of the optimal
system are much smaller, making any difference comparatively much larger.

This improved performance comes at a cost, however. The next table (Table 5.4)
shows the performance of the same filters, but now the perturbed systems have a good
sensor instead of the bad sensor for Table 5.3. Because the system now has only a
perturbed A and G with a good sensor, the Kalman filter results are exactly the same as
those of Table 5.2. The robust filter, on the other hand, is still designed for uncertainty in
the sensor error model. Thus, its performance degrades from the results listed in Table
5.3.

State Kalman Filter Robust Filter
70% Power Level | Chamber Pressure 6.2972 8.0394
Mixture Ratio 3.4795 4.7211
80% Power Level ]| Chamber Pressure 4.5297 5.9325
Mixture Ratio 3.9119 5.1757
90% Power Level | Chamber Pressure 3.6626 5.3030
Mixture Ratio 3.0582 4.2236
100% Power Level {|Chamber Pressure 0.8399 2.1460
Mixture Ratio 1.2631 2.1941
110% Power Level |Chamber Pressure 0 0.5035
Mixture Ratio 0 0.2098

Table 5.4: Percent difference from optimal of standard deviation of error for perturbed plant dynamics

(robust filter designed for perturbed plant and sensor error models)

5.2.3 Uncertainty in sensor error model

The final example in this section is for perturbations in the sensor error model
alone. The plant model is unchanged from the nominal 110% power level--both filters are
designed using an accurate plant model. Perfect sensors are impossible, and often precise
knowledge of the sensor model is very difficult to obtain. Thus, the addition of robustness
to sensor error is certain to be a useful enhancement in an estimator's design. For this first
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simulation, the Kalman filter is designed for the nominal case with the good sensor, and the
robust estimator is designed with the uncertainty of the bad sensor error model taken into
account. The error weighting matrix, M, is defined as the identity for both the design and

analysis in this example.

The Kalman filter results are identical to the equivalent models in Table 5.3 and
Table 5.4. In contrast to the models used to generate the data in Tables 5.3 and 5.4, the
robust estimator in this case did not take any model uncertainty into account and the
estimation error weighting matrix, M, also is different. Hence, the robust estimator's
results have changed from those examples. For the perturbed case, the robust filter has
gained an additional 3% for chamber pressure error from the Kalman filter. The error
when the sensor model is correct is still less than 1% (although it is now slightly worse
than the case for Table 5.4). This allows significant room for the robust filter to be used as

the estimator for a system where the noise model is uncertain.

110% Power Level Kalman Filter Robust Filter

Chamber Pressure 17.5125 5.6375
Mixture Ratio 7.8384 2.2884

Table 5.5: Percent difference from optimal of standard deviation of error for bad sensor

110% Power Level Kalman Filter Robust Filter

Chamber Pressure 0 0.8655
Mixture Ratio 0 0.3503

Table 5.6: Percent difference from optimal of standard deviation of error for nominal sensor

These results are already dramatic. An even more dramatic result is seen if the
sensor is not only of poor quality, but it has "failed," becoming in effect a white noise

generator. A new sensor model was developed for a severely degraded sensor according to

0 0 0020 - O
(5.2-3)

Bdegraded =[o 0 0 0020

The sensor now has a variance of 100 times that of the good sensor. A robust filter was
designed around the nominal good sensor with the uncertainty of this degraded sensor,
while the Kalman filter still only used the nominal good sensor. The results of the

simulation with the failed sensor are in Table 5.7.
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110% Power Level Kalman Filter Robust Filter
Chamber Pressure 211.6694 19.7098
Mixture Ratio 117.2075 7.6359

Table 5.7 Percent difference from optimal of standard deviation of error for degraded sensor

Now the chamber pressure has a standard deviation of over 200% worse than the optimal
Kalman filter for the perturbed system. This is compared to the robust filter's error of less
than 20%. The results are equally impressive for the mixture ratio. Once again, though,
this dramatic improvement in performance must come at some cost. Table 5.8 shows the
results when the sensor is still the good sensor. Again, the Kalman filter, having perfect
knowledge of the plant and noise models, is the optimal estimator. The robust estimator
only sacrifices 4% in chamber pressure from the optimal estimator, though. For an
improvement of almost 200% for when the sensor has failed, this cost seems minimal to
bear.

110% Power Level Kalman Filter Robust Filter
Chamber Pressure 0 3.9835
Mixture Ratio 0 1.5048

Table 5.8 Percent difference from optimal of standard deviation of error for nominal sensor

Quality sensors are expensive. By using robust filters, lower quality sensors can
be used with acceptable loss of performance. Also, sensors degrade with time. Estimators
that are robust to sensor perturbations allow for the sensors to degrade over time without
sacrificing much in the quality of the estimate. This can also be a significant cost savings.

5.3 Application with control signal variation

The preceding section only allowed for disturbances as input signals. In this
section, the control input, #, will also be included.

5.3.1 Uncertainty in sensor error model

The first example shown is the same case as in Section 5.2.3. The sensor error
models used there are the same as the ones used in this section. Since there is no
perturbation in B, the Kalman filter is able to properly account for the control signal. Thus,
the data presented in the tables from Section 5.2.3 are unchanged. The effects of the
degraded sensor can easily be seen in a time plot, though. Figure 5.2 shows the state
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estimates for chamber pressure with the degraded sensor model for both the Kalman filter
and the robust estimator. In order to better distinguish the different curves, the plot has

been enlarged in the region of 4-6 seconds.
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Figure 5.2: Estimators with degraded sensor model
State Squared error
Kalman filter Chamber Pressure 0.6480 x 10-3
Mixture Ratio 1.0635 x 10-3
Robust estimator Chamber Pressure 0.0820 x 10-3
Mixture Ratio 0.2416 x 103

Table 5.9: Squared estimation error for degraded sensor model

The squared estimation error for the entire 12 second simulation (not just from 4-6
seconds) for the two estimators is compared in Table 5.9. The numbers from the table
mirror what is readily apparent in the plot--the robust estimator performs much better when
the sensor has degraded than the Kalman filter designed for the nominal good sensor. As
usual, this comes at a cost. Figure 5.3 and Table 5.10 show the results for when the

sensor is nominal (i.e., it is the good sensor).
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Figure 5.3: Estimators with nominal sensor model

Again, as expected, the Kalman filter performs better when the plant and noise models are
known completely. The robust estimator, though, remains extremely close in quality. In
fact, one needs to reference Table 5.10 in order to see that the Kalman filter is better--
Figure 5.3 shows no clear advantage for either estimator.

State Squared error

Kalman filter Chamber Pressure 0.0483 x 10-3
Mixture Ratio 0.2034 x 10-3

Minimax estimator | Chamber Pressure 0.0498 x 10-3
Mixture Ratio 0.2114 x 10-3

Table 5.10: Squared estimation error for nominal sensor model

In the case of sensor model uncertainty, therefore, it is clearly better to design a
robust Heo estimator. The costs associated with the robust estimator are minimal,

especially when compared to the estimates that are several times better when a sensor
degrades.
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5.3.2 Uncertainty in plant model

The next challenge is to build an estimator that is not only robust to plant dynamic
and process noise model uncertainty (Section 5.2.1), but also robust to uncertainty in the
control input. Despite repeated attempts, parametric uncertainty was not entirely successful
at meeting this goal. The output shown in Figure 5.4 is from a robust filter designed
around the 110% power model as nominal with 250% uncertainty. The uncertainty in the
control input matrix, AB, was also given an additional 1000%. The perturbed system in
this case is the 90% power level model. As in Chapter 3, the Kalman filter never
recognizes the perturbed system, and its estimates remain close to the nominal plant states.
Unfortunately, even though the robust filter estimates are much better than the Kalman
filter, it is unable to completely eliminate the bias. This bias becomes especially
pronounced immediately following the system's response to the step functions in Figure
2.3.
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Figure 5.4: Robust estimator with parametric uncertainty
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Figure 5.5: Robust estimator with modified plant and parametric uncertainty

In order to improve the performance of the robust estimator, several attempts were
made at giving the plant various combinations of additive error and parametric uncertainty.
The final method used to generate the data in Figure 5.5 is described in Appendix B. While
the bias following the step functions has been reduced, it has not been entirely eliminated.

While the plots show the final results obtained with the different methods, they do
not show the many previous attempts. As the understanding of the problem grew, and the
subsequent designs of the estimators refined, the results continued to improve. Time did
not allow for further development of a robust estimator that could fully eliminate the bias,
although it is expected that with additional effort the desired results could be achieved.

5.4 Summary

With the robust Hes estimator, design engineers have several options based on their
knowledge of the system. While the Kalman filter produces the same filter regardless of
the uncertainty associated each system component, the robust filter allows for multiple
designs that incorporate the level of uncertainty that the engineer feels is present. The first
design presented in Section 5.2.1 allows for uncertainty in the plant model when there is no
change in the control signal, but assumes that there is no uncertainty in the sensor model.
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When the plant is nominal, the Kalman filter's performance is better, but at each of the
other power levels the robust filter is better. Next, the sensor uncertainty was also
included. Again, when the models are fully perturbed, the robust filter is superior. When
the sensor is in fact nominal (instead of perturbed), though, the Kalman filter is slightly
better. This allows the engineer to design a filter that allows for some sensor degradation
to occur. Only sensor uncertainty was examined in the next case. The value of the robust
filter is readily apparent, as the robust filter permits a sensor to degrade severely without
much loss in the nominal case, while the Kalman filter is unable to process the noise
measurements. Finally, the robust filter also is better equipped to deal with plant
perturbations when the control signals have some variation. Although it's estimation error

is large due to an unresolved bias, it still easily outperforms the Kalman filter.
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6.0 Conclusion

This thesis was concerned with the application of recently developed robust
estimation techniques to the Space Shuttle Main Engine. Unlike the fairly well-developed
Heo control problem, robust estimation theory is relatively new. Promising results in this
thesis indicate that it merits continued investigation. The results from the Heo estimators
developed in this thesis demonstrate that these estimators, when compared with Kalman
filtering techniques, gain robustness to both plant and noise model uncertainties without
excessive sacrifices in performance when the models are known completely. Section 6.1
summarizes the results obtained in this thesis, and Section 6.2 provides some suggestions
for additional research, both for this particular example and for robust estimation in
general.

6.1 Summary of results

The thesis opens in Chapter 2 with a brief description of the SSME and how it is
controlled through the use of various valves. From there, the linear models for five
different power levels are given (as derived in [6]). Based on these linear models, noise
models for both the process noise and the measurement noise were developed. Figures
show the effect of these noises on the outputs of the system.

Chapter 3 introduced the estimation problem, and the enduring Kalman filter was
derived as one solution. Using the models from the previous chapter, the Kalman filter
demonstrated its optimality for estimating systems when it has complete knowledge of the
plant and the noise. The Kalman filter's limitations were also shown for systems including
some perturbation. In response, the Heo solution to the estimation problem is introduced.

Chapter 4 develops the Hoo minimax filter, the estimator that is designed to
minimize the estimation error when given the worst-case noise. When given white noise,
the Kalman filter's performance is superior to the minimax filter (as expected). However,
when a suitable approximation for the worst-case noise is applied to the system the
minimax performs significantly better than the Kalman filter. Even when given a simple
sinusoidal input, the minimax's error is less than the Kalman filter's (which is designed for
white noise input).

The minimax derivation from Chapter 4 is expanded in Chapter 5 to include plant
model uncertainty as well as noise model uncertainty. Several different robust estimators
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were designed in this chapter based on different perturbations and uncertainty models. The
first involved perturbations in just the dynamics and process noise inputs, and the second
also included sensor model perturbations. There was no control input for these examples.
Robust estimators were found for each of these examples that handled the perturbations
better in each case than the Kalman filter designed for the nominal system. Next, an Heo
estimator that was robust to sensor model uncertainty alone was designed. This estimator
was applied both to the case where control input varies and the case where the control input
was constant. This result allows for significant degradation of the sensors to occur without
sacrificing the quality of the estimates. Finally, a filter that was robust to plant and process
noise model uncertainties, including control inputs, was attempted. While the Heo
estimator was more robust than the Kalman filter, it, too, was insufficient for the perturbed

cases.

6.2 Suggestions for further work

There are many available avenues for further work. The first is readily apparent
following the last section--to obtain an estimator that is sufficiently robust to all power level
perturbations (including plant, control, and noise models). The next arises from expanded
work by the authors of [6], who developed system models for 25 different linear points, as
well as a method to link each of them together to cover all of the models over time [8].
Designing estimators that are robust to this linked model would be an achievement. Also,
the description of the noise as purely white in nature for this application is a simplification.
The noise models could be developed to more accurately reflect non-white noise dynamics

that are present.

Other avenues for future work center around the estimation theory in this thesis.
There are immediate advantages to making this system time-varying, especially in the case
where the estimator needs to be robust to responses in the plant caused by changes in the
control. By letting the estimator gain be time-varying, the initial covariance following a
change in the input function can be made artificially high, thereby creating an abnormally
high gain. This gain would make the system rely more on the measurements, and as the
system rapidly changes the increased weighting of the measurements would cause the
estimator to react much more quickly to abrupt changes. Hopefully this modification
would also effectively fight the bias that remains in Section 5.3.2. As the system response
settled, the covariance would continue to decrease, in turn decreasing the gain and the

reliance on the measurements with their inherent noise.
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Another suggestion is only an implementation issue. Should a robust filter be
developed that is robust to all possible perturbations, two filters can be combined. After
the system has reached plateau (where the control is not changing), the estimator from
Section 5.2.2 can be used. When the control changes the second estimator would be used
(such as the one explained in the previous paragraph). This would allow for better
estimates by cutting down on the chatter at the plateaus while still responding well to
changes in the control input.

A final suggestion involves using the robust estimator in a controller. Except for
the linear quadratic regulator problem (LQR), which has full state feedback, current
controllers solve two Riccati equations--one for the estimator gain, and one for the control
gain. This includes not only the linear quadratic gaussian (LQG) controller (a Kalman filter
providing the estimates for an LQR), but also the current Hoo controllers. It is unknown
what the effect of adding a third Riccati equation would do to the control. (There would be
three Riccati equations by using a two-equation robust estimator followed by a third to

generate the control gain.)
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Appendix A Parametric Uncertainty

The following is a method from [1] showing how to incorporate parametric
perturbations into the system matrices.

Given a state-space plant with parameter errors

) )

=1 =1
’ / ’ (A1)
l l
Y = C+2ch5] xk+ D+ZAD]61 g%
j=1 j=1
where each J; represents a parameter error that is normalized as
-1<§;<1  Vj=1..1 (A-2)
and
| A-3)
Ty = d (A-
The matrices associated with the uncertainty parameter can be collected into a single matrix
_ AA_] AB_/ c SK(nx+ny)x(nx+n,) (A‘4)
7 |AC; AD;

where ny, ny, and n, are the dimensions of the vectors xy, Yk, and rg, respectively.
Generally, this matrix will not be of full rank since one parameter rarely affects all of the
states and outputs. Hence, N; can be decomposed using singular value decomposition
(SVD) techniques into

Nj= {%][SJ L] (A-5)

J

n,.xXn; n, Xn; n: xn n;xXn o
where QjeEK" f,Rjem’ ’,SjeEK’ ",Ljem’ ", and n; is the rank of the

matrix N;. Combining Eqgs. (A-5) and (A-1), the state-space model can now be written as
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and the relationship between 7 and & is of the form

[ L)
Mk :
LT

i

= Aek

(A-9)

Expanding Eq. (3.1-2) to include 14 and &, the new open-loop transfer function for the

plant becomes
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This now fits the form of Figure 5.1.
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Appendix B Plant Modification

This appendix describes how the results in Section 5.3.2 are obtained. Instead of
the output, y, only depending on the plant, P, an additional error term is included. This
error term is created by the transfer function, W, shown in Figure B.1.

|74
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Figure B.1: Block diagram of additive error

Since there are two inputs and two outputs, the form for W is

W=[Wll le} (B-1)
Wy Wy

In this case, W represents the difference between the the perturbed system and the nominal
system open-loop transfer functions. When the nominal system is the 110% power level
model, and the perturbed system is the 90% power level model, the elements of W are

— 190% 110%
Wi

=~ T PBorov ~ * PcBorov
Woo =79%  _7110%
12 P.Bepov P Brpov B2
W =T99%  _pl10% (B-2)
217 S MRBopov —  MRBopoy
90% 110%
Wy = TMRﬁFPov ~ Y MRBrpoy

T g?g’omv is the open-loop transfer function from the rotary motion of

where, for example,
the oxygen pre-oxidizer valve to chamber pressure for the 90% power level model. Since
some of these transfer functions are of very high order, reasonable approximations of these
transfer functions are matched to the actual values, and these approximations are used as
the W;/'s. In order to prevent a bias from this additional error term in the nominal case, the
output from W is reduced to only 25% of its full value. This creates a new plant for the

filter to estimate (shown in Figure B.2).
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This new plant is then given some parametric uncertainty according to the
methodology described in Appendix A (i.e., the estimator is designed for the plant shown
in Figure B.2). The uncertainty associated with P is 50%, while that for W is 1000%. In
addition to the overall uncertainty percentage, extra uncertainty is given to the input
matrices by multiplying AB,, by 15, AG, by 5, 4B,, by 150, and AG,, by 30.

A

|74

u P — +—>)’

Figure B.2: Block diagram of additive error with parametric uncertainty
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